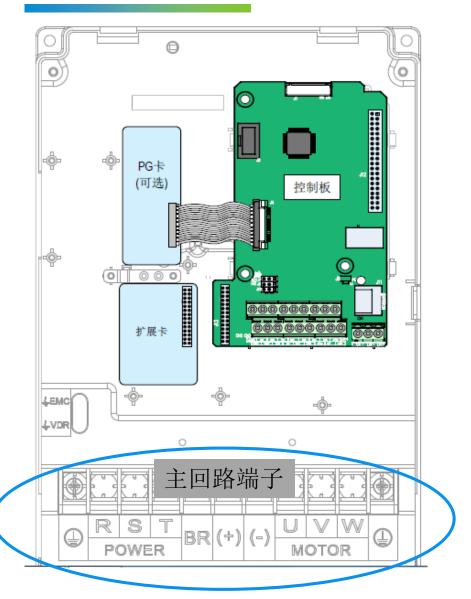


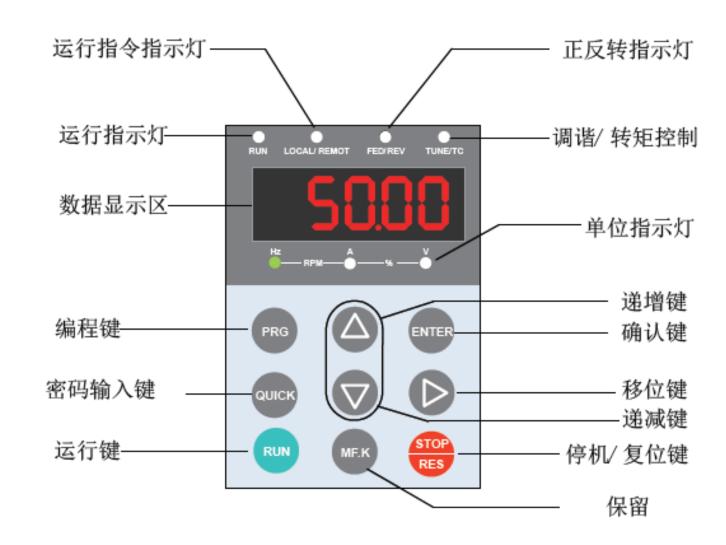
- 1 "认识"变频器
 - 2 变频器硬件结构
- 3 基本参数设置
- 4 常见问题及处理
- 5 爬塔注意事项

采用交流——直流——交流结构

认识变频器



- 1 "认识"变频器
- 2 变频器硬件结构
- 3 基本参数设置
- 4 常见问题及处理
- 5 爬塔注意事项


变频器硬件结构

变频器硬件结构

1. 操作面板

2. 功能指示灯说明

➤ RUN: 灯亮时表示变频器处于运转状态, 灯灭时表示变频器处于停机状态。

➤ LOCAL/REMOT: 键盘操作、端子操作与远程操作(通信控制)指示灯:

○ LOCAL/REMOT: 熄灭	面板起停控制方式
● LOCAL/REMOT: 常亮	端子起停控制方式
● LOCAL/REMOT: 闪烁	通讯起停控制方式

➤ FWD/REV :正反转指示灯,灯亮时表示处于反转运行状态。

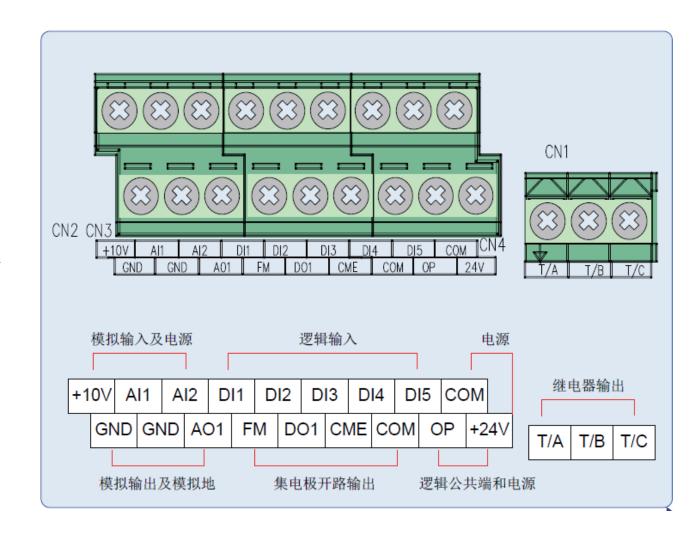
➤ TUNE/TC : 调谐/ 转矩控制/ 故障指示灯, 灯亮表示处于转矩控制模式, 灯慢闪表示处于调谐状态, 灯快闪表示处于故障状态。

—、CS710

二、CS200

变频器硬件结构-CS710

(1)输入配置

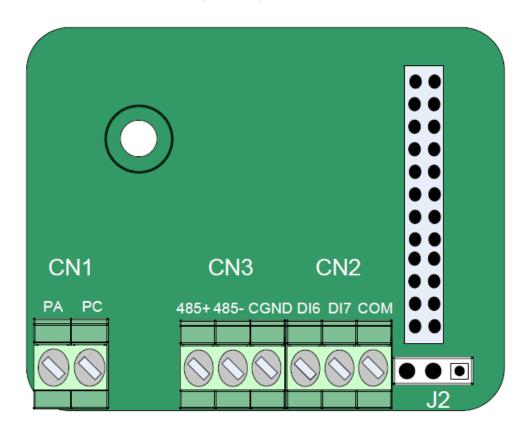

- ◆ 8个DI数字量输入(DI1 ~ DI8)
- ◆ 2个AI模拟量输入

AI1: 0~10V电压信号

AI2: 0~10V电压信号和4~20mA电流信号

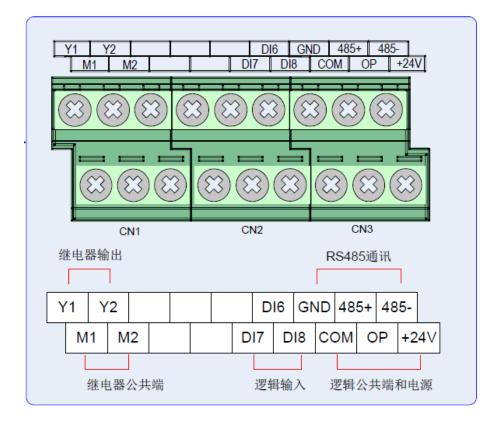
(2)输出配置

- ◆ 1个高速脉冲输出端子(FM)
- ◆ 1个数字输出端子DO 1
- ◆ 1个继电器输出端子
- ◆ 1个模拟输出端子AO 1

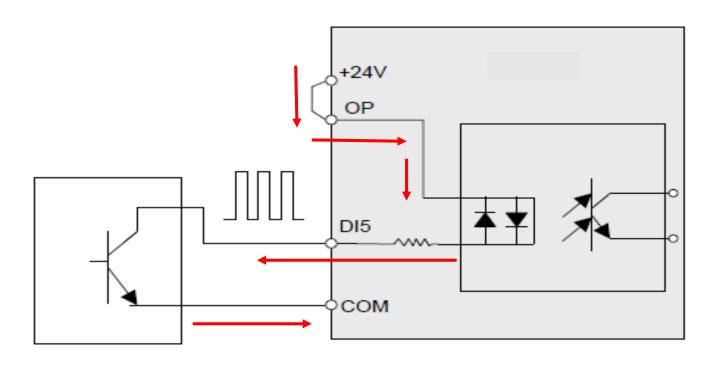


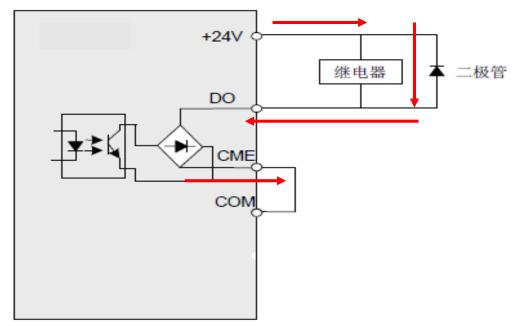
主控板

变频器硬件结构-CS710

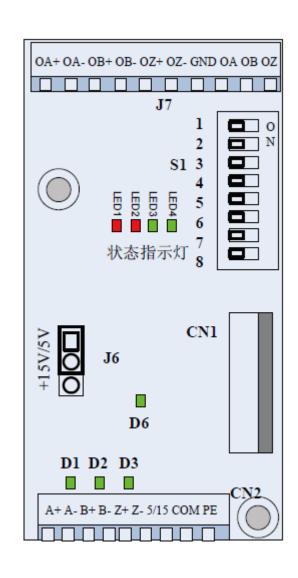

(3)扩展卡配置

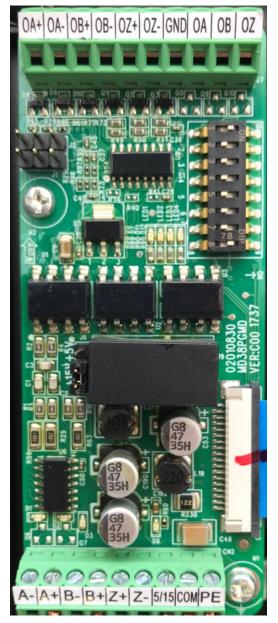
1. 11KW及以下机器使用CS700IO 1扩展卡


有2路DI,1路继电器输出,1路485通讯


2.15KW及以下机器使用CS700RC 2扩展卡

有3路DI,2路继电器输出,1路485通讯




DI 输入 DO 输出

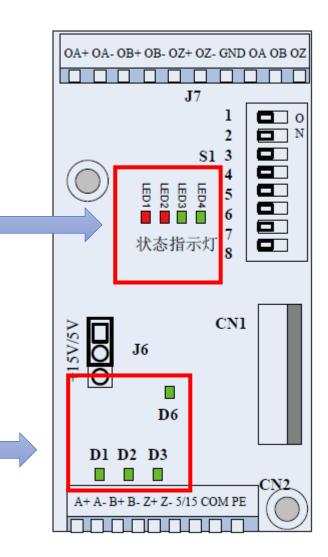
变频器硬件结构-CS710

(4)扩展编码器卡

- 1. 根据现场供电电压J6选择正确的跳线;
- 2. 正确连接A、B、Z出接线,如果只有两根 AB线则连接到A+、B+,电源正负接到5/15 和COM,屏蔽线接到PE;
- 3. b2组根据编码器情况设置正确的参数;
- 4. 试运行,如果报120或137错误,则对调 A+、B+接线(对换时变频器需彻底断电)。

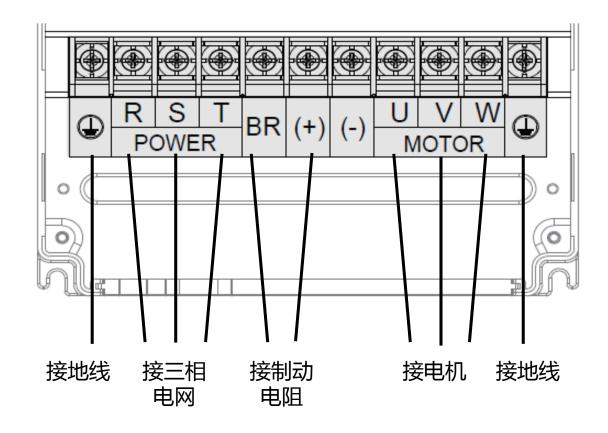
变频器硬件结构

编码器卡指示灯说明:


	不亮	编码器输入信号正常
LED1	亮/闪烁	编码器输入信号不稳定, 受到干扰
	不亮	PG卡信号正常
LED2	亮/闪烁	PG卡信号不稳定,编码器 信号可能有干扰
LED3	亮	可以不关注
LED4	亮	系统正常工作
	闪烁	编码器线缆断线

D6:电源指示灯

D1: A+、A- 信号输入指示灯


D2:B+、B-信号输入指示灯

D3: C+、C- 信号输入指示灯

变频器硬件结构

(5) 主回路端子

- ◆ 1. R, S, T为三相电输入U, V, W为三相电输出不可以接反,否则会烧坏机器。
- ◆ 2. BR和+是制动电阻连接端子,无正负之分。
- ◆ 3. +和-为直流母线端子,90KW以上机器连接制动单元点。

—、CS710

二、CS200

变频器硬件结构

CS200的硬件配置

标准配置:

- ◆ 1.输入:
- 5个数字输入(DI1-DI5,其中DI5是高速脉冲输入)
- 2个模拟量输入(AI1、AI2)
- ◆ 2.输出:
- 1 个高速脉冲输出端子(FM)
- 1个数字输出端子DO 1(默认已转换为继电器输出)
- 1个继电器输出端子
- 1 个模拟输出端子AO 1

CS200的输入输出扩展

采用CS70RC2作为输入输出的扩展卡

类别	标号	说明
输入	DI 6 DI 7 DI 8	3路数字量输入
输出	Y1~M1 Y2~M2	2路继电器输出
通讯	485+、485-	1路485通讯端子

CS200变频器限位信号显示

显示	说明	处理方法
STOP1	上限位	检查DI7输入点信号
STOP2	下限位	检查DI8输入点信号
STOP3	禁行限位	检查DI10输入点信号 (顶窗、单开门、双开门、 相序继电器、防坠器)
STOP6	超载限位	检查限位器或降载
STOP9	远程锁机	联系升降机厂家

- 1 "认识"变频器
- 2 变频器硬件结构
- 基本参数设置
- 4 常见问题及处理
- 5 爬塔注意事项

基本参数设置(塔机)

CS200、CS700和CS710的功能参数主要分为三级菜单,便于区分和设置。

1. 一级菜单(A组参数): 主要是电机参数

手动设置参数

A0.01: 电机额定功率

A0.02: 电机额定电压

A0.03: 电机额定电流

A0.04: 电机额定频率

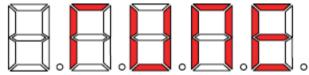
A0.05: 电机额定转速

A0.08 起重机构选择

0	起升机构
1	平移机构
2	回转机构

2. 二级菜单(b、E、U组参数): 基本功能、故障记录、监控

参数	说明	设定值
b0.04	调谐方式	3
b1.00	控制方式	0 (SVC开环,回转) 1 (FVC闭环,起升) 2 (VF,变幅)
b4.00	加速时间	9
b4.01	减速时间	10
b5.00	1档速度	8Hz
b5.01	2档速度	15Hz
b5.02	3档速度	25Hz
b5.03	4档速度	35Hz
b5.04	5档速度	50Hz
bF.04	命令源选择	1


多段速度逻辑图如下,是由输入端子的DI3、DI4、DI8决定,通过这三个端子的数字状态组合来实现的。

DI8	DI4	DI3	目标速度
无效	无效	无效	b5.00
无效	无效	有效	b5.01
无效	有效	无效	b5.02
无效	有效	有效	b5.03
有效	无效	无效	b5.04
有效	无效	有效	b5.05
有效	有效	无效	b5.06
有效	有效	有效	b5.07

参数自学习

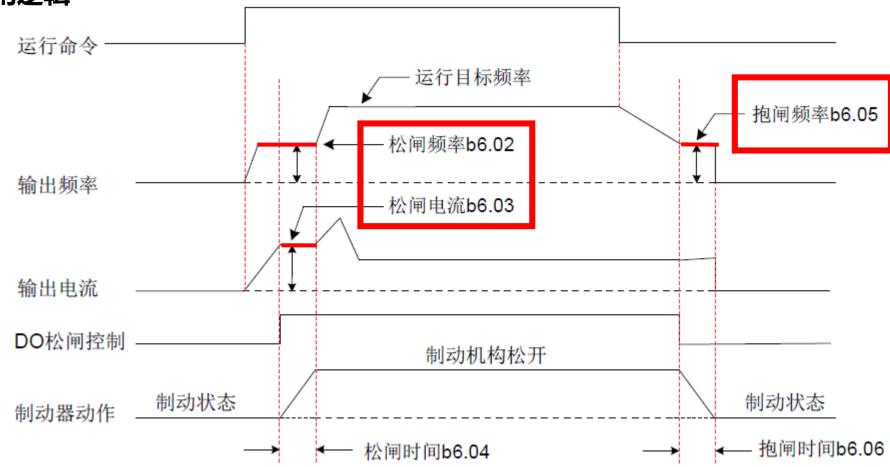
- 1. 上电后,将变频器命令源Bf. 04改为0(操作面板控制);
- 2. 根据电机铭牌输入右边的电机参数;
- 3. 将功能码b0. 04改为3(静态调谐),按ENTER确认, 此时面板会显示:

- 4. 按下面板上的RUN键,变频器自动运行进行调谐,右上角TUNE灯闪烁。 等待2~3分钟后,面板显示退回正常时表示调谐完成。
- 注:如果第3步中没有TUNE状态没有持续2分钟直接跳回正常值,将b3.06改为0继续执行第三步,完成后b3.06改为105。

手动设置参数

A0.01: 电机额定功率

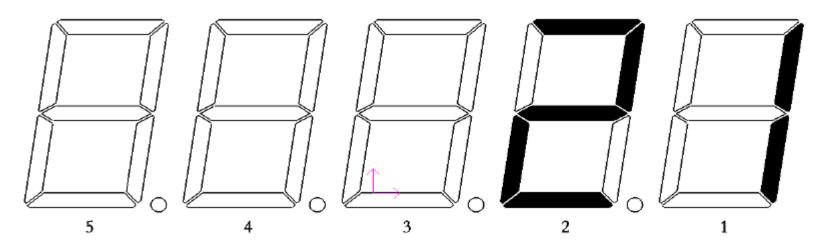
A0.02: 电机额定电压


A0.03: 电机额定电流

A0.04: 电机额定频率

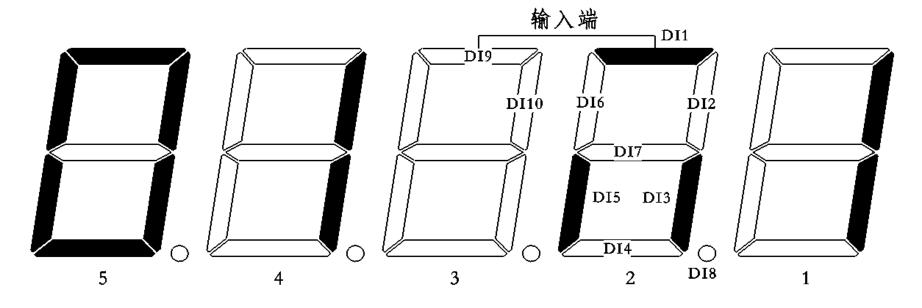
A0.05: 电机额定转速

松抱闸逻辑


- 1. 松闸阶段, 检测到松闸频率到达或松闸电流到达后, 抱闸机构打开;
- 2. 抱闸阶段,运行速度降低至抱闸频率后,抱闸机构闭合。

U组监控参数

	参数	名称	最小单位	内容	
	U0.00	给定频率	键盘显示: 0.1Hz 通讯读取:	变频器的当前给定频率。	
	U0.01	反馈频率	键盘显示: 0.1Hz 通讯读取: 0.01Hz	该参数显示的是电机实际运行频率的反馈值。在不带编码器运行时该参数为变频器软件计算的反馈频率,带编码器运行时为编码器反馈的实际电机运行频率。 现场调试时若无法判断编码器部分电路是否正常工作,可以在 VF模式运行下查看该参数的反馈频率是否正常,若正常则可以排除编码器部分的原因。	
L			键盘显示:		
	U0.02	目标频率	0.1Hz 通讯读取: 0.01Hz	变频器本次运行最终需要达到的频率。	
	U0.03	输出电流	0.01A	显示运行时变频器输出电流值。	
	U0.04	输出电压	1V	显示运行时变频器输出电压值。	
	U0.05	输出功率	0.1%	显示运行时变频器输出功率值。	
	U0.06	输出转矩	0.1%	显示运行时变频器输出转矩值 (电机额定转矩的百分比)。	
	U0.07	母线电压	0.1V	显示变频器的母线电压值。	INOVAN


输入点监控U0.10

第一次进入U0.10时,上图所示5个数码管会显示一个10进制的数字,比如DI1有效时显示1,DI2有效时显示2,DI3有效时显示4 依次类推,DI1和DI2同时有效时显示3(1+2)。

此时显示的是十进制数21,转化为2进制数是0001 0101,所以DI1,DI3,DI5有效。

输入点监控U0.10

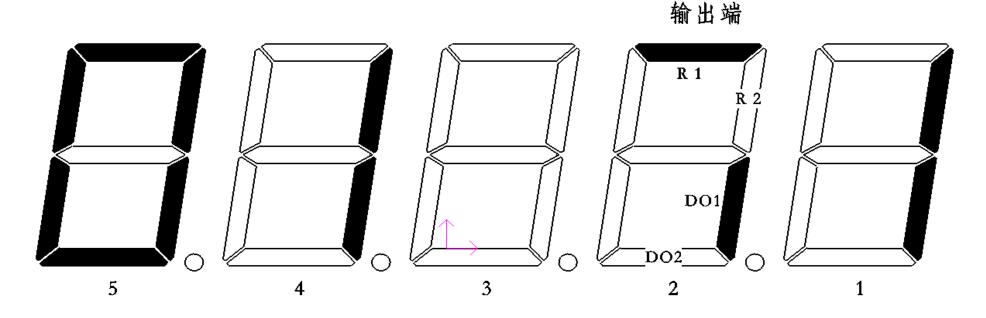
在进入U0.10后按一下向上的箭头,输入监控会进入另一模式,2号和3号数码管代表所有DI端子的状态,但1号、4号和5号又另有意义:再按一下向上的箭头4、5数码管会1→2→10变化,此时1号数码管显示的分别是DI1→DI2→DI10的状态,0为无效,1为有效。

输入点监控U0.10(实例)



34转为2进制0010 0010 所以DI6和DI2有效。

输出点监控U0.11



第一次进入U0.11时,上图所示5个数码管会显示一个10进制的数字,比如继电器1有输出时显示1,继电器2有输出时显示2,DO1有输出时显示4,DO2有输出时显示8,继电器1和继电器2同时有效时显示3(1+2),同理继电器1、继电器2和DO1同时有效时显示7(1+2+4)。

上图所示为R1、DO1输出有效时的显示值5(1+4)。

0000 0101

输出点监控U0.11

在进入U0.11后按一下向上的箭头,输出监控会进入另一模式,2号和3号数码管代表(图上相应位置已标上端子号),但1号、4号和5号又另有意义:再按一下向上的箭头4、5数码管会1→2→3→4变化,此时1号数码管显示的分别是R1(继电器1)→R2(继电器2)→DO1→DO2的状态,0为无输出,1为有输出。

上图2、3号数码管所示为R1、DO1输出有效的状态图,4、5号数码管显示01代表此时1号数码管代表的是R1的状态(输出有效)。

E组监控参数

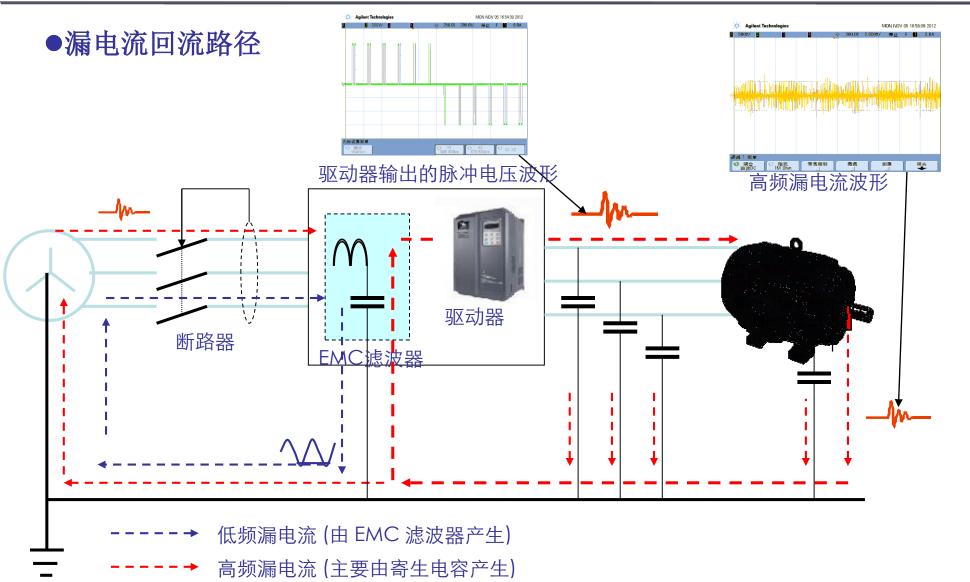
参数	名称	最小单位	参数说明
E*.00	故障代码	0.01	操作面板上的五个数码管从左至右依次编号为 5、4、3、2、1,例如:显示内容为 104.01,5#、4# 和 3# 数码管组成故障代码,其中 5# 数码管的 "1"为故障等级;4# 和 3# 数码管的 "04"为故障代号;2# 和 1# 数码管是厂家保留内容。
E*.01	故障时给定频率	键盘显示: 0.1Hz 通讯读取: 0.01Hz	故障时监控参数 U0.00 的显示值
E*.02	故障时反馈频率	键盘显示: 0.1Hz 通讯读取: 0.01Hz	故障时监控参数 U0.01 的显示值(V/F 控制时为 U0.00 的显示值)
E*.03	故障时输出电流	0.01A	该参数记录故障时监控参数 U0.03 的显示值
E*.04	故障时输出电压	1 V	该参数记录故障时监控参数 U0.04 的显示值
E*.05	故障时输出功率	0.1%	该参数记录故障时监控参数 U0.05 的显示值
E*.06	故障时输出转矩	0.1%	该参数记录故障时监控参数 U0.06 的显示值
E*.07	故障时母线电压	0.1V	该参数记录故障时监控参数 U0.07 的显示值

FF.01参数说明

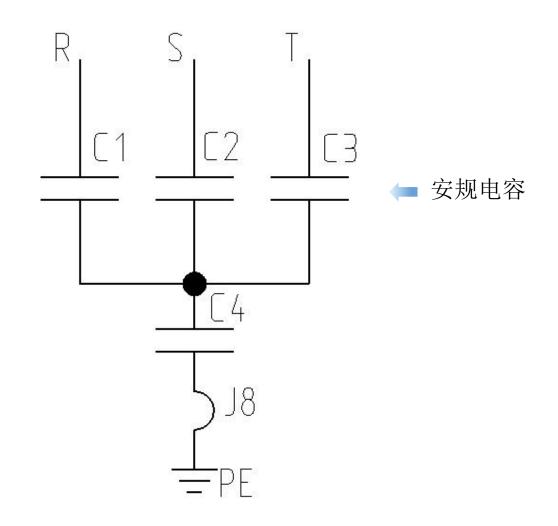
- ◆ FF.01代表变频器机型,需要和对应变频器的功率等级对应上。
- ◆ 15代表15KW, 小一档减一, 大一档加一。
- ◆ 改后FF.03和变频器的铭牌上功率一样即可。

型号: CS710-4TxxG(B) [1]	0.4	0.7	1.1	1.5	2.2	3	3.7	5.5	7.5	11
适用电机容量 (kW)	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11
型号: CS710-4TxxG(B) [1]	15	18.5	22	30	37	45	55	75	90	110
适用电机容量 (kW)	15	18.5	22	30	37	45	55	75	90	110

◆ 举例说明


FF.01	12	13	14	15	16	17	18	19	20	21	22
变频器 功率	5.5	7.5	11	15	18.5	22	30	37	45	55	75

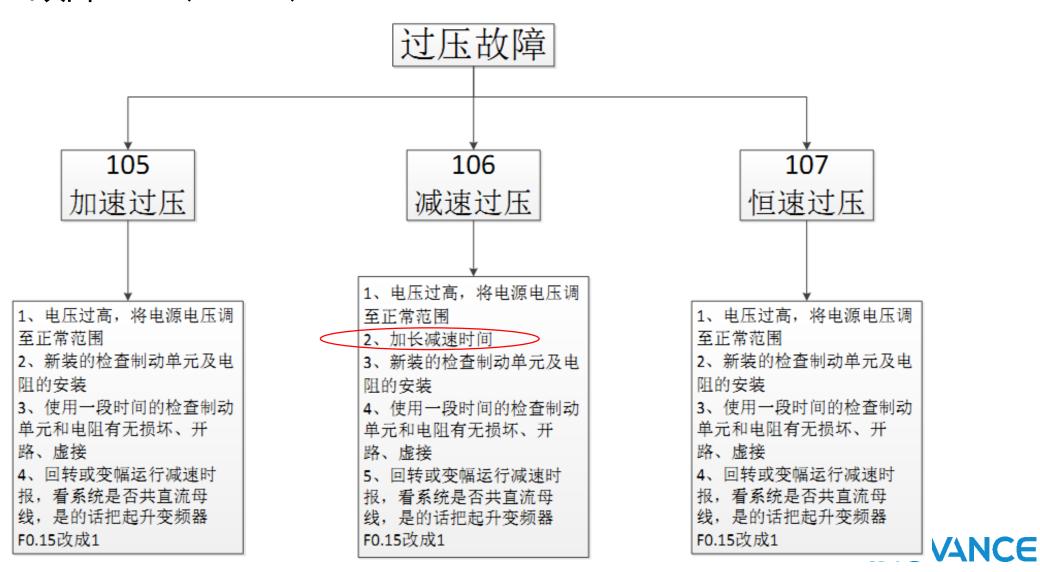
- 1 "认识"变频器
 - 2 变频器硬件结构
- 3 基本参数设置
- 4 常见问题及处理
- 5 爬塔注意事项

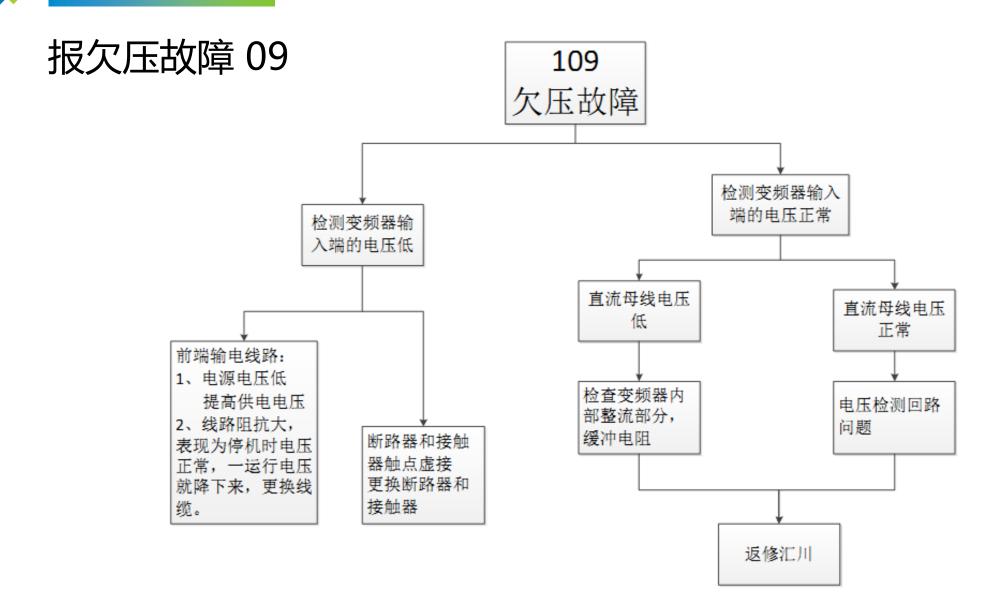

常见问题及处理

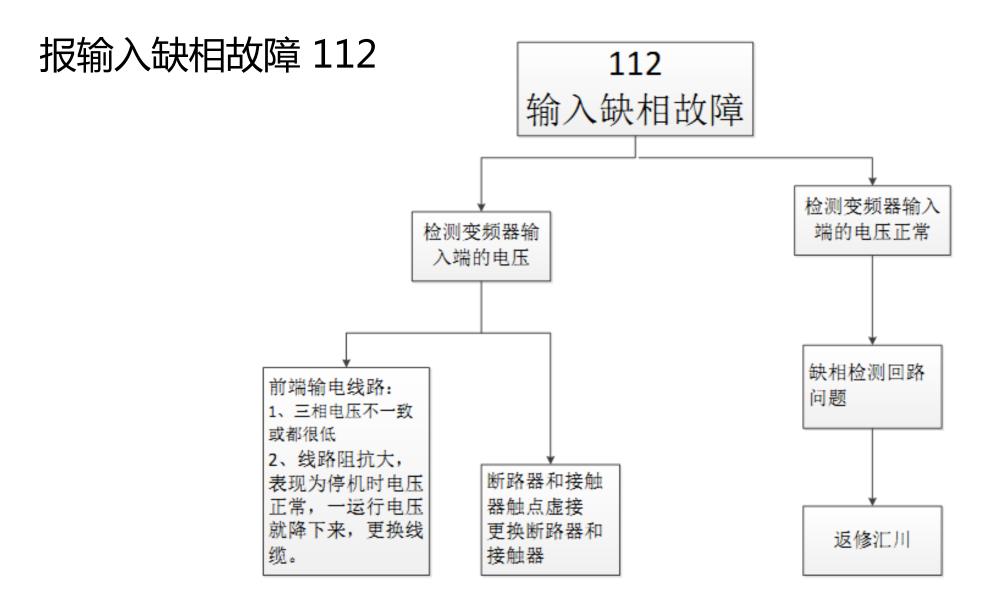
变频器的漏电流的产生原理

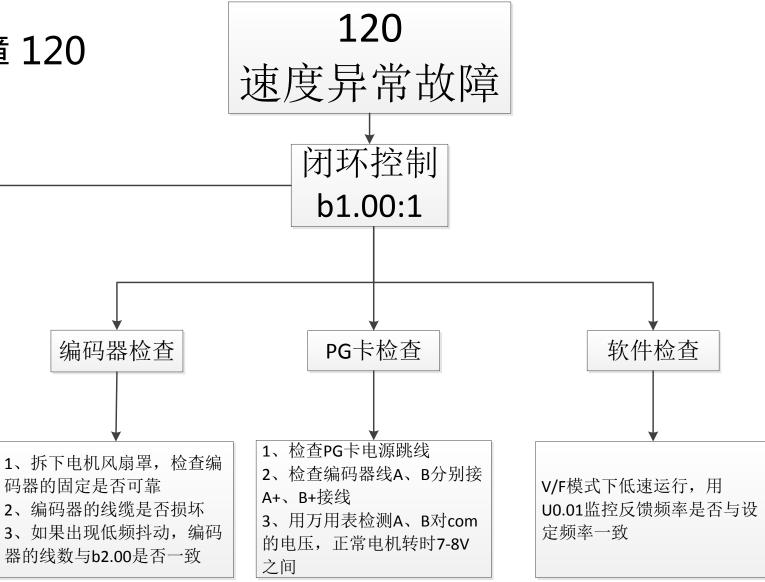
变频器的漏电流说明

当R、S、T变频器电源 三相输入电中的高频谐波比 较多时,高频谐波就会通过 C1、C2、C3电容然后再经过 C4电容,再经过J8跳线到接 地线PE,造成一上电就跳漏 电开关。


常见问题及处理—故障等级


故障等级	处理方式	显示方式
一级故障	◆ 操作面板显示故障代码	Er !**
	◆ 输出功能 1(制动器控制) 无效	
	◆ 输出功能 2(故障停车)有效	
	◆ 变频器执行自由停车	
二级故障	◆ 操作面板显示故障代码	
	◆ 输出功能 3(故障报警)有效	E-2**
	◆ 变频器执行快速停车	
三级故障	◆ 操作面板显示故障代码	
	◆ 输出功能 3(故障报警)有效	E-3**
	◆ 变频器执行减速停车	
四级故障	◆ 操作面板显示故障代码	
	◆ 输出功能 4(故障提示)有效	E-4**
	◆ 各种工况运行不受影响	
五级故障	◆ 各种工况运行不受影响	


报过流故障 102、103、104 过流故障 102 加速过流 103 104 减速过流 恒速过流 闭环查编码器 V/F查转矩提升 接线 和V/F曲线 1、检查A组电机参数,排除外围 1、检查A组电机参数,排除外围 1、检查A组电机参数,排除外围 故障: 如电机接线、抱闸部分 故障: 如电机接线、抱闸部分 故障: 如电机接线、抱闸部分 2、进行电机参数辨识 2、进行电机参数辨识 2、进行电机参数辨识 3、加长减速时间 3、 电压太低的改善供电环境 3、加长加速时间 4、有突加负载的改善操作习惯 4、V/F控制方式,调整手动提升 4、V/F控制方式,调整手动提升 5、电压太低的改善供电环境 转矩或V/F 曲线 转矩或V/F曲线 6、如果仅下行时报检查制动电阻 5、如果仅下行时报检查制动电阻 5、如果仅下行时报检查制动电阻 阻值太小或者短路 阻值太小或者短路 阻值太小或者短路 6、b2.00和编码器的线数是否一致 7、b2.00和编码器的线数是否一致 6、b2.00和编码器的线数是否一致 7、如果高频时报提高F0.16看有无 8、如果高频时报提高F0.16看有无 7、如果高频时报提高F0.16看有无 改善 改善 改善

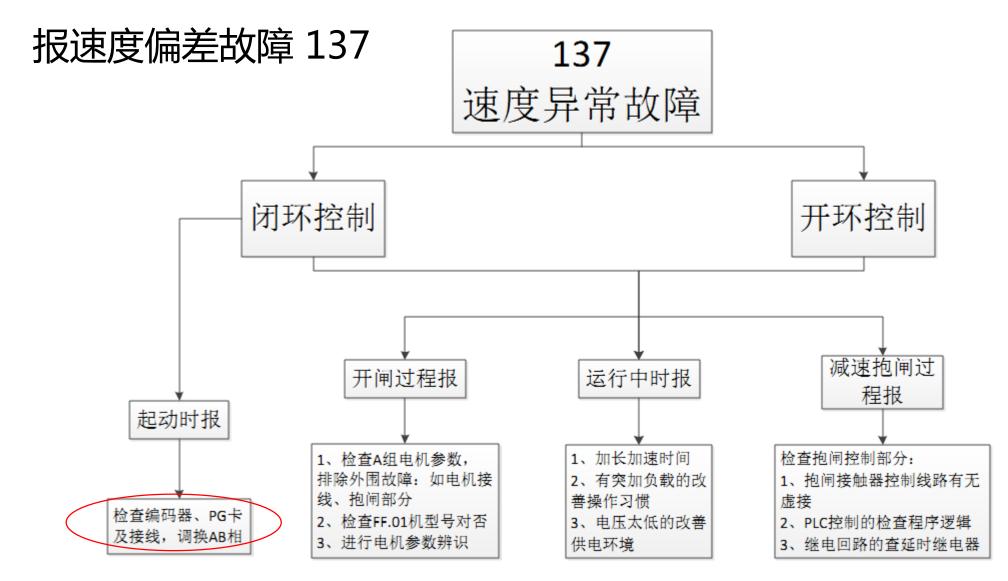

报过压故障 105、106、107

报编码器故障 120

b1.00改成0或者2 0: 开环矢量

无编码器

2: V/F


2、编码器的线缆是否损坏

3、如果出现低频抖动,编码 器的线数与b2.00是否一致

码器的固定是否可靠

编码器检查

INOVANCE

138 报速度偏差故障 138 速度异常故障 闭环控制 开环控制 减速抱闸过 运行中时报 开闸过程报 程报 起动时报 1、加长加速时间 检查抱闸控制部分: 1、检查A组电机参数, 排除外围故障: 如电机接 2、有突加负载的改 1、抱闸接触器控制线路有无 线、抱闸部分 善操作习惯 虚接 检查编码器、PG卡 2、检查FF.01机型号对否 3、电压太低的改善 2、PLC控制的检查程序逻辑 及接线。 3、进行电机参数辨识 供电环境 3、继电回路的查延时继电器

报制动电阻过载 315

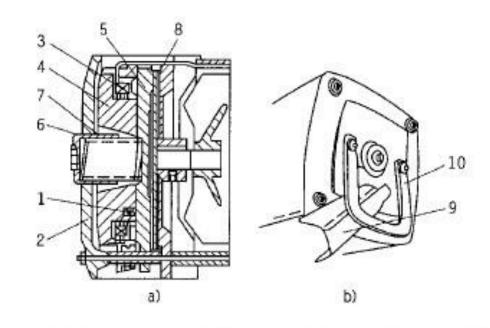
- 1. 查看变频器制动电阻设置值bf .33;
- 2. 万用表量现场电阻的阻值;
- 3. 两者对比,若现场电阻值比bf.33偏差较大就会报错;
- 4. 修改bf.33电阻值等于或者略大于实际电阻值。

长沙现场抱闸接触器 工作过程中不定期的几下 触点接触不良,液力推杆 不动作,造成报137、138 故障。

如右图所示是诺德的施工升降机电机自带整流模块, 这个模块上的1-4端子必须 一一对应否则会出停车抱闸 慢的情况。

在特别寒冷(零度以下),每天早上起动时老报37#故障或10#过载,抱闸正常打开,但吊笼始终不动,等到中午暖和后又一切正常。

应对方案:


每天晚上下班时停到2楼位置,第二天先往一楼开,然后就可以正常工作了,主要原因是涡轮蜗杆减速箱油在低温下粘度太高造成的。

每天早上起动时老报37#故障或10#过载,抱闸看似正常打开,但吊笼始终不动。

应对方案:

出现这种情况一般是昨天下雨了,或者设备长时间没用,处理方法是把抱闸拆开松一下然后装好(一个一个来),主要原因是刹车盘与电机侧一直黏在一起。

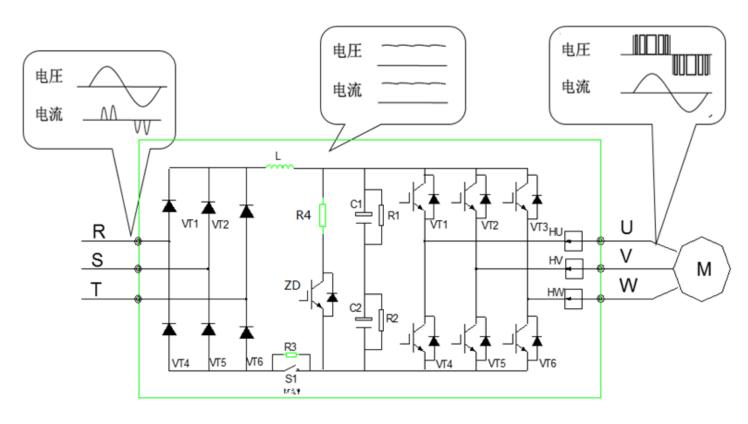

- 1. 压缩弹簧 2. 端架 3. 磁铁线圈 4. 磁铁架 5. 衔铁 6. 调整轴套
- 7. 制动器弹簧8. 可转制动盘9. 楔块10. 松开把手

图 1 SCD 200/200 型施工升降机制动器结构简图

编码器故障判断方法

- 1. A0.05和电机铭牌上的转速是不是一样,编码器线数b2.00 对不对;
- 2. 用万用表测PG卡5/15对com有没有15V,没有的话先看跳线是不是在15档,如果跳线在15V档但是量不到电压那就是PG卡损坏;
- 3. 一档运行用万用表测a,b对com电压,7到8V正常,电压在 正常范围外都是编码器损坏;
- 4. 前面3个都正常,把b1.00改为2,然后开一档u0.01显示在7.9-8.1之间,如果波动大说明严重干扰,如果一直是零,说明pg卡有可能有问题。

缓冲电阻的损坏原因及预防

▶ 制动单元ZD损坏原因

- 1. R4外接制动电阻或电阻线对地短路, 有些是电阻在震动时偶尔短路。
- 2. R4外接制动电阻内部短路
- 3. ZD制动单元长期高温工作导致损坏

> 预防措施

- 1. 防止制动电阻及线路对地
- 2. 做好散热维护工作,譬如: 经常检查散热风扇、清理风道灰尘。

- 1 "认识"变频器
- 2 变频器硬件结构
- 3 基本参数设置
- 4 常见问题及处理
- 5 爬塔注意事项

爬塔注意事项

- 1.在爬塔吊之前,首先检查塔吊下面的电源开关是否开启,总控制电箱以及塔吊专用分电箱是否安全通电。
- 2.爬塔吊过程中,注意攀爬安全,双手一定要抓稳,双脚一定踩实。千万不可单手攀爬,不可东张西望。另外,攀爬塔吊危险性太高,切记戴上防滑手套及穿防滑鞋。
- 3.高处作业人员的身体条件要符合安全要求。如,不准患有高血压病、心脏病、贫血、癫痫病等不适合高处作业的人员,从事高处作业;对疲劳过度、精神不

振和思想情绪低落人员要停止高处作业;严禁酒后从事高处作业。

- 4.高处作业人员的个人着装要符合安全要求。如,根据实际需要配备安全帽、安全带和有关劳动保护用品;不准穿高跟鞋、拖鞋或赤脚作业;
- 5.下雨,下雪,打雷,大风(≥6级风)等天气状况下禁止爬塔作业。
- 6. 塔机顶升过程中禁止爬塔,尽可能远离塔机。

INOVANCE

Forward, Always Progressing